机器学习成功模拟并预报流感传播

2021-02-10 15:20 | 来源:科技日报 | 作者:张梦然 | [科技] 字号变大| 字号变小


 病毒性疾病在人群中的传播,取决于感染者和未感染者之间的互动。目前用来预测疾病在一个城市或国家传播的模型数据,都存在稀疏和不精确的问题,比如通勤调查或网上搜索数...

        据英国《自然·通讯》杂志9日发表的一项机器学习最新研究,美国科学家团队报告称:对匿名手机数据进行基于机器学习的分析,可以成功模拟并预报病毒性疾病——流感的传播。现阶段研究显示,这个移动地图能够准确预报纽约市和澳大利亚的流感传播情况,未来或还将有潜力对新冠肺炎进行监控。

        病毒性疾病在人群中的传播,取决于感染者和未感染者之间的互动。目前用来预测疾病在一个城市或国家传播的模型数据,都存在稀疏和不精确的问题,比如通勤调查或网上搜索数据。

        为了获得一个更稠密的数据集,此次,美国谷歌公司研究人员亚当·萨迪乐克及其同事从打开“位置历史记录”功能的安卓手机上收集了匿名追踪数据,并利用机器学习方法将这些数据拆分成单个“行程”,进而构建出一个人群移动地图。他们借助一个根据医院挂号和检验数据进行校准的传染病传播模型,利用这个移动地图成功模拟“预报”了2016年至2017年纽约市内和周围的流感活动。

        研究团队发现,这个模型比常用的标准预报模型表现更好,和使用通勤调查数据差不多,但已知通勤调查数据收集起来成本更高。他们还模拟“预报”了2016年流感季澳大利亚国内的流感传播。虽然澳大利亚的人口更稀疏,流感动力学也不同,但这个模型依然能非常准确地预测流感的高峰和低谷。

        现有的高分辨率移动数据来自手机通话记录,这些记录具有提供者特异性,一般无法反映跨境或跨国移动。位置数据没有这方面的限制,因此对于监测长距离的疾病传播更具潜力。目前,这些数据在完整性上有欠缺,因为智能手机使用率低的小孩和老人的移动数据并不包含在内。虽然存在这些限制,但研究团队证明了利用手机数据预报流行病传播的潜力。

电鳗快报


1.本站遵循行业规范,任何转载的稿件都会明确标注作者和来源;2.本站的原创文章,请转载时务必注明文章作者和来源,不尊重原创的行为我们将追究责任;3.作者投稿可能会经我们编辑修改或补充。

相关新闻

信息产业部备案/许可证编号: 京ICP备17002173号-2  电鳗快报2013-2021 www.dmkb.net

  

电话咨询

关于电鳗快报

关注我们